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SUMMARY 

This paper is an expanded version of that delivered at the recent Sixth International Symposium on Finite 
Element Methods in Flow Problems, Antibes, France. It begins by reviewing the role of the finite element 
method (FEM) in turbulent flow simulation during recent years. The difficulties in incorporating sufficiently 
general descriptions of turbulence (i.e. two-equation models) into successful finite-element-based Navier- 
Stokes codes are examined and analysed in some depth. Current progress by various workers in overcoming 
these difficulties is reviewed and, by concentrating on one particular approach, it is demonstrated that the 
FEM has now matured into a powerful and flexible tool for solving two-dimensional turbulent flows of 
industrial complexity. The applications presented highlight those features which render the FEM attractive in 
this field (viz., minimal false diffusion, arbitrary local refinement, boundary fitting capabilities and non- 
structured grids). Finally, the prospects and challenges for the future are briefly discussed. In particular, the 
urgency and difficulty of constructing a competitive three-dimensional capability which preserves these 
features is examined. 
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INTRODUCTION 

In recent years, the impact of the finite element method (FEM) upon many aspects of 
computational fluid dynamics (CFD), a field of endeavour which is traditionally dominated by 
finite difference/finite volume techniques, has been steadily increasing.' For example, a survey of 
the recent literature will reveal that the FEM is now used regularly to solve problems of industrial 
complexity in applications such as coastal and estuarial hydrodynamics, oil reservoir modelling, 
compressible aerodynamics and fluid-structure As recently pointed out by one of 
the  author^,^ the glaring exception seems to be turbulent flow and heat transfer. This is illustrated 
in Figure 1, in which the percentages of papers appearing in the Proceedings of recent CFD 
Conferences which deal with (i) turbulent flow using the FEM, (ii) turbulent flow using finite 
volume and (iii) general viscous flow using the FEM are presented. Although the data from the cited 
Conferences are not comparable in absolute terms, certain trends are apparent. As can be seen, the 
FEM has and continues to exert a significant impact upon general viscous flow computation, 
demonstrating to great effect various advanced (second-generation) features such as negligible false 
diffusion, fitting of awkward boundary shapes and arbitrary local refinement with non-structured 
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Figure 1. The impact of the FEM on turbulent and general viscous flow computation (even years-Finite Elements in 
Flow Problems; odd years-Numerical Methods in Laminar and Turbulent Flow) 

grids. The impact upon turbulent flow computation has by comparison been disappointing 
(although the upturn in the curve suggested by the Antibes C~nference ,~  if sustained, is 
encouraging). And yet, turbulent flow is by far the more important area as far as industrial 
application is concerned and, indeed, is an area which should benefit enormously from the above- 
mentioned ‘second-generation’ features of the FEM. It is, then, somewhat surprising that to date 
the FEM has played such a minor role. 

In the wake of the successful experience with viscous flow simulation, initial activity was high. 
Figure 1 indicates that, at that time (circa 1981), the percentage of FE papers dealing with turbulent 
flow was at the same level as in 1985. However, most of these addressed fairly simple uni-directional 
flows employing simple algebraic prescriptions of the effective viscosity. Only a third dealt with the 
more complex geometries requiring differential equation turbulence models. By 1982 the over- 
all level of activity had fallen dramatically and has remained fairly low until very recently. The 
reason seems to be due to difficulties which are encountered when incorporating sufficiently 
general descriptions of turbulence into that FE framework which has been developed for general 
viscous flows, while retaining a similar degree of 

An increasing number of workers have been addressing these difficulties with considerable 
energy in recent years. Others, with a background in finite differences, are endeavouring to graft 
this established technology into the FE In short, the level of activity is increasing and 
it would seem that progress is being made (witness the 1986 upturn in Figure 1). It is, therefore, 
perhaps timely to attempt a review of the current state of the art. 

Having set down the basic equations which are generally used to simulate industrial flows, the 
paper will continue by examining the nature and cause of the difficulties that have been 
encountered. The various options that are currently being pursued to overcome these difficulties 
will then be briefly surveyed before presenting some applications (based upon one of these options) 
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which demonstrate that the FEM is now being used to solve problems of industrial complexity and 
which underline those ‘second-generation’ features which render the method so attractive. Finally, 
the paper will conclude with one or two speculative comments on the challenges and prospects for 
the future. 

BASIC EQUATIONS FOR PRACTICAL TURBULENT FLOW COMPUTATION 

Dgeerential equations 

Attention will be restricted to ‘time-meaned’ formulations of turbulent flow. That is to say, all 
dependent variables appearing in the equations are presumed to represent an integrated average 
over a time interval which is long compared to the timescale of the largest eddy, but short 
compared to the timescale of flow evolution imposed by the boundary conditions. Whether or not 
such a time interval can be sensibly defined will not be debated here, since the primary concern will 
be with the computation of ‘time-meaned steady’ flows, the evolutionary terms being retained only 
for the purpose of numerical convenience in seeking this steady state. 

For simplicity, only two-dimensional flows will be considered (the instantaneous flow is of course 
three-dimensional). Let u u2 represent the mean velocity components in the co-ordinate 
directions x1,x2 respectively and let p represent the mean pressure. Then if all variables are 
rendered dimensionless with respect to a characteristic velocity and length, the momentum and 
continuity equations can be written 

6 = B , ,  au, au, a p  1 a + PT u2 
- + urn- + - - - - ( x ; T m n )  + 2a-- 
at ax ,  ax, x ; a x ,  Re xi n 2  

Here Re denotes the Reynolds number, B, are the components of a body force (e.g. buoyancy or 
Lorentz force) and the parameter a takes the value zero for two-dimensional planar flows and unity 
for axisymmetric flows (in which case u2 is the radial velocity component). For most of the flow 
situations encountered in practice, the turbulence structure is not everywhere locally determined 
(e.g. separation, reattachment, bodies of recirculating fluid, etc.) and thus the turbulent viscosity pT 
must be constructed from additional transport equations governing the velocity and length scales 
of the larger turbulent eddies. The simplest and certainly the most popular closure at this level is the 
k--E model, where k is the turbulence energy and E is its rate of dissipation. According to this 
prescription 

pT/Re = C, k2/&,  (4) 

ak ak 1 1 a x;Pu, 
at ,ax, Re X; ax, - + u  ( _ _ ~  a~ ;x,j = 2s.  - &, 

a& a& 1 1 a x;PT a& E2 
= C,C,,kS, - c2.p - + u  __- 

at ,ax, R e x ;  ax, ( a. ax,) 

s,= (dun -+- 8Urn)aun -+2a (a)’ 2 , 
ax, ax,  ax, (7) 
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where C,, ok, a&, C,, and C,, are model constants, usually set to the recommended standard values 
0.09,1.0,1.3,1.44 and 1.92 respectively. 

From equation (3) it is apparent that only those flows where the turbulent stresses can be 
interpreted by means of a scalar turbulent viscosity are considered. While this might seem unduly 
restrictive, the model nonetheless proves adequate for many engineering purposes' and currently 
forms the basis of most industrial applications. Furthermore, in those situations where higher- 
order closures are required to capture the essential physics, equations (5) and (6) invariably remain 
at the heart of the m ~ d e l . ' ~ , ' ~  In short, effective means of treating these equations is crucial at all 
levels of practical simulation. 

Boundary conditions 

In implementing the above equations into a numerical scheme, the solution is not usually 
extended right to a wall but is instead matched to universal wall functions describing the behaviour 
of flow at some small distance h from the wall. This avoids the requirement for excessive grid 
refinement in the wall vicinity and also having to deal with viscous effects in the turbulence model. 

Thus, if u, v represent tangential and normal components respectively and subscript h denotes a 
quantity evaluated at distance h from the wall, it is assumed 

(8) 
5 1  = -ln(Reu,h) + C, Reu,h > 30, 
u, K 

where zw denotes the (dimensionless) wall shear stress, K and C are universal constants and the scale 
velocity u, is given as z;l2. Some practitioners (in fact, probably use the alternative 
definition for u,, 

with equation (8) then being written 

*=i ln(Reu,h) + C, Reu,h > 30. 
z w  K 

Equation (10) (which is a statement that the turbulence is in local equilibrium) renders the two 
forms identical. If, however, equation (10) is replaced by the Neumann condition (dkldn) ,  = 0, 
then the equivalence is broken and distinct numerical advantages can ensue from adopting 
equations (12) and (13). Various wall regions of flow are encountered for which the turbulence is 
not in local equilibrium (e.g., the vicinity of a reattachment point at which z, is zero). Difficulties 
arise in applying equation (8) in such regions, since RezAI2 h is small, and one is then normally 
forced to revert to the viscous a ~ y m p t o t e ' ~  

u,,/u, = Re u, h, 

even though the turbulence model cannot strictly span such behaviour. Furthermore, if heat 
transfer is being calculated using thermal-momentum similarity, the predicted heat transfer 
coefficient will exhibit a minimum at reattachment instead of a maximum as experimentally 
oberved. On the other hand levels of k remain high if the Neumann condition is adopted so that 
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there is usually no difficulty in applying equation (13) with u, given by equation (12). This also 
produces the (qualitatively) correct heat transfer behaviour. 

The other types of boundary commonly encountered are treated in a now standard way. At 
inlets all dependent variables except pressure are specified, whereas at symmetry lines 

= 0. ak a-E au-t  u.n=O, -=--- - 
an an an 

where n, t are the unit normal and tangential vectors respectively. It is usual to leave the dependent 
variables unspecified at outlets, thus approximating the natural boundary conditions 

ak aE 
-=- = ( - p a , , ,  + z,,)n, = 0. an an 

EXPERIENCE WITH GALERKIN FINITE ELEMENT DISCRETIZATION 

Discretization 

If in equations (1)  and (3) pT is specified explicitly, then the equation system is identical to that 
describing a variable-viscosity laminar flow. Such laminar flows have been successfully treated 
using what are now standard techniques for the Navier-Stokes ~ y s t e m . ' ~ , ' ~  Typically the flow 
region is covered with a structure of triangular or quadrilateral elements. On each of these the 
velocity is quadratically or perhaps linearly interpolated and solutions to the momentum 
equations are then sought by the Galerkin method of approximation using symmetric weighting 
(i.e., no upwinding). The continuity equation is incorporated either by the penalty m e t h ~ d ' ~ . ~ ~  (in 
which case the explicit appearance of pressure is suppressed) or by the Lagrange multiplier 
method19 (the pressure then being linear or piecewise constant over quadratic or linear velocity 
elements respectively) or a combination of both (e.g., the PALM method2'). If steady-state 
solutions are sought (the primary concern of this paper), it is usual to remove the time variation and 
tackle the resulting equation set using the Newton-Raphson (NR) iterative procedure coupled 
with a direct frontal solver for the linear systems within each iteration. Once a wall treatment based 
upon the procedures outlined above is incorporated, such schemes also prove successful in 
calculating turbulent flows for which pT is algebraically specified. It thus seemed natural, when 
extending the methodology to handle complex turbulent flows, to discretize equations (5) and (6) 
using a similar Galerkin finite element treatment, with k and E typically expanded in terms of the 
velocity basis functions. Although this approach proved initially successful for simple uni- 
directional f l o ~ s ~ ~ , ' ~  (witness the 1981 level of activity in Figure l), several authors have reported 
difficulties when more complex configurations were attempted. 

A survey of the dgficulties 

Some of the earliest attempts to apply GFE methods to the k--E system in complex configurations 
were those of Larock and his co-workers. Larock and Schamber6 presented solutions for 
recirculating flow in a sedimentation basin. These were obtained by directly tackling the stationary 
equation set by employing a strategy which alternated between velocity field updates for a given pT 
variation and pT updates (via the k--E coupled system) for a given velocity field. Special relaxation 
procedures and modifications to the Newton-Raphson (NR) scheme were employed for treating 
the k--E system in order to avoid the appearance of negative values of k and E, since these inevitably 
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led to divergence. Even so, the stability of the scheme proved oversensitive to the quality of the 
initialization (i.e. its ‘closeness’ to the solution) and was therefore considered impractical as a 
general tool. 

Subsequent work has endeavoured to improve the robustness of the scheme.24 This is achieved 
by the introduction of line searching (negative k and E values are disallowed in the search) and by 
‘homing in’ on the k--E solution for a given velocity update by switching progressively through 
three distinct algorithms, each one introducing more non-linearity (i.e., implicitness) than its 
predecessor. Obviously a complex iteration schedule (i.e., set of instructions for switching between 
equation sets and between algorithms) must be specified to operate the scheme and at present this is 
done largely by trial and error. Operational experience indicates the desirability of further 
research in this area. 

Tong’ investigated the performance of a GFE scheme for solving flow over a backward-facing 
step. An alternating outer iteration strategy like that of Larock and Schamber was employed, 
except that the k-s system was solved by a Picard- rather than a NR-based scheme. Solutions were 
obtained from crude initializations (zero velocity, constant pT, k and E )  but only after introducing 
special procedures which essentially altered the system being solved. In particular, the values of the 
model constants q,, aE were reduced to 0.5 (this is equivalent to introducing false diffusion in the k 
and E equations), only the absolute values of k and E were accepted after each Picard update and the 
velocity field was successively updated without convergence in k and E being achieved. Tong, in an 
attempt to justify the second of these rather ad hoc procedures, suggested that the tendency to 
produce negative values of E signified an unphysical transfer of energy from small to large 
wavelengths. This, in his opinion, was an expected consequence of the two-dimensional nature of 
the k--E formulation, since the transfer of energy through the spectrum was in reality via a three- 
dimensional mechanism. It was therefore necessary and physically plausible to reject negative 
values in order to ‘enforce a forward energy cascade’. 

Polansky et aL9 employed GFE approximations on quadratic triangular elements to calculate 
separated flow over a backward-facing step at a fairly low Reynolds number of 3025 (based on step 
height and upstream velocity). Once again, the system was partitioned into turbulent and 
dynamical subsystems, each being updated successively by NR iteration. In order to stabilize the 
scheme, a large component of artificial turbulent viscosity was introduced, this being progressively 
reduced as the iterations advanced, and the non-linear terms in the equations were introduced only 
gradually. Despite this, they found it necessary to dispense with wall functions (i.e., extend the grid 
to the wall) and to introduce a low-Reynolds-number turbulence model in order to achieve 
convergence. 

Considerable insight into the cause and nature of such difficulties was provided by Smith,8 who 
studied flow through a sudden pipe expansion at a Reynolds number of 3 x lo4 (based upon 
downstream pipe diameter and bulk velocity). In his model, the source quantity S ,  (equation (7)) 
was introduced explicitly as an interpolated variable with quadratic representation over the 
elements. Nodal values of S ,  were determined by GFE approximation to equation (7) and these 
were then introduced into a GFE treatment of the steady-state form of equations (5) and (6) in 
which the right-hand sides, as a whole, were quadratically interpolated over each element. Careful 
numerical experimentation revealed that, at  least for the boundary conditions adopted (viz., inlet 
located at the step position and wall functions used in the lee of the step), no solution existed to the 
resulting system on the mesh chosen. This was because the velocity field in the vicinity on the re- 
entrant corner was such as to produce an extremely sharp peak in S, .  In response to this peak, k and 
E increased exponentially with distance from the corner until k2/E was large enough for diffusion to 
reverse the trend (see equation (4)). The grid was not sufficient to resolve this growth and decay (i.e., 
peak) and spatial oscillations characteristic of the GFE method thus ensued. Once these were of 
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sufficient amplitude to produce negative values in k and E (which invariably proved the case), a real 
solution no longer existed since diffusivities became negative (equation (4)) and sources and sinks 
reversed their roles (equations (5) and (6)). Local grid refinement only exacerbated the situation by 
sharpening the peak in S, and thus the response of k and E .  In fact, a grid sufficient to capture this 
response and thus stabilize the scheme could not apparently be constructed. This raises the 
question what, if any, is the limiting value of S, with grid refinement. As can be seen from 
equation (7), S ,  is a quadratic function of velocity gradients and, in particular, the square of the 
radial derivative of the axial component. As the corner is approached, this can be approximated by 
(Au/Ar)2, where Au is the velocity change across the shear layer emanating from the step and Ar or 
its radial thickness. In physical reality, this ratio is undoubtedly large as Ar diminishes. However, in 
the Smith calculation, its value was determined by the imposed boundary conditions at the (inlet) 
grid edge. The velocity at the first node above the step was imposed from experiment, whereas the 
velocity at the first node below the corner was imposed by the wall functions. These two distinct 
behaviours produce a finite Au between these nodes irrespective of their spacing, say Ar, and 
consequently S ,  is unlikely to be bounded as the grid is refined. 

This problem, which it should be emphasized is only local in character, could possibly have 
been alleviated by removing the inlet to a position upstream of the step and/or dispensing with 
wall functions (cf. Polansky et ~ 1 . ~ ) .  However, a robust general purpose code should be capable of 
dealing with any well-posed boundary condition and indeed any physical distribution of sources, 
at least in the sense of producing a solution on a given grid. A naive extension of the GFE 
discretization to the k--E system will not exhibit robustness in this sense, although, of course, there 
will be many cases where solutions can be found. For the general situation, the key elements in 
ensuring a solution on a given grid are the introduction of false diffusion to attenuate the response of 
k and E in regions of high net production and/or a judicious representation of S, on the elements 
(i.e., a smoother resolution of S, so that local peaks are reduced). Smith showed that, by adopting 
this latter option and representing S, as a constant on each element, a discrete solution could 
indeed be obtained. Unfortunately, the existence of a discrete solution does not guarantee that the 
chosen solver will find it. The Newton-Raphson scheme employed by Smith converged only if 
presented with an extremely accurate initial guess (e.g., a finite difference solution). It was 
established that this behaviour was due to the presence of multiple false minima in the vicinity of 
the required solution. A large-stepping, implicit solver such as NR is obviously not ideal in such 
situations, despite its success in treating laminar flows. 

Less troublesome experiences 

It should be pointed out at this juncture that several authors have published GFE solutions to 
complex turbulent flows without reporting any particular diffi~ulties.'~~'~*~~-~' 

Baker27 has concentrated on essentially three-dimensional parabolic flows. For example, 
Baker and Orzechow~ki'~ solved turbulent flow in the region formed by the intersection of two 
aerodynamic surfaces (e.g., wing-fuselage). Such flows are essentially uni-directional in nature, 
with comparatively weak secondary recirculations normal to the main flow direction. Although 
they present special difficulties in modelling the turbulence structure (a simple scalar pT will not 
suffice), the ingredients which give rise to the difficulties discussed above are largely absent (i.e., 
strongly elliptic flows with intense regions of shear). 

However, these ingredients are present in several other publications. For example, Taylor et ~ 1 . ' ~  
and UchidaZ5 both report solutions to the same downstream-facing step configuration as that 
tackled by Polanski et ~ 1 . ~  (as discussed above). Taylor et al. tackled the steady equations directly, 
partitioning them into two sets, the first comprising the momentum and k equations (the latter 
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being in the well-known one-equation k-1 form), the second comprising the E equation. Each set 
was linearized by successive substitution rather than Newton-Raphson with under-relaxation 
between iterations. The solution procedure alternated between solutions of the first set and 1 
updates via the second set (u, k fixed). Uchida opted for a transient GFE formulation in which the 
velocity-pressure variables were replaced by the vorticity-stream function. The steady solution 
was sought by a procedure in which each equation in the o, rl/, k and E set was linearized using 
current (nth level) time values and then advancing to the (n  + 1)th level by means of Crank- 
Nicolson time-stepping. Neither author reported any particular difficulty in obtaining conver- 
gence. This, at first sight, may seem at odds with the difficulties reported in the foregoing discussion. 
However, it must be recognized that the Reynolds number was fairly low (3025) and in both cases 
solutions were started well upstream of the step. These factors afford a considerable alleviation of 
the problems encountered by Smith, although not those reported by Polansky et al. A key to 
Uchida’s success could be the time-stepping technique used for solving the equations and the fact 
that the velocity field is derived from the stream function, so that S ,  is very crudely represented on 
each element. Also, it is interesting to note that Taylor et al. calculated the reattachment length to 
be less than 4.5h(h is the step height) and Uchida produced the figure 3.3h. The experimentally 
observed value is 6h and the k--E model, despite its tendency to overpredict length scale near 
reattachment, should produce a value in excess of 5h.28 Indeed, Polansky et al., albeit with their 
low-Reynolds-number version of k--E, calculated reattachment at 5.5h. If, as this suggests, the two 
schemes under discussion’ 7,25 were overdiffusive, their robustness would be considerably 
enhanced. 

OVERCOMING THE DIFFICULTIES 

From the above-related experiences, it would seem that any code based upon the k--E model which 
is also sufficiently robust to tackle a large range of flows of industrial complexity must incorporate 
a judicious representation of the sources in relation to the u field and/or a degree of false diffusion to 
ensure that a solution exists on practical grids (i.e., negative k and E values are precluded). In 
addition, an iterative solver of large radius of convergence is required; that is, a gentle relaxation 
procedure which can ‘home in’ on the solution, ignoring false minima and avoiding non-physical 
regions. It is of interest to note that most finite volume codes in current widespread use possess all 
three ingredients in large measure, which perhaps explains their popularity in industrial 
application. Indeed, attempts to refine the modelling (e.g., the introduction of skew upwind 
differencing or QUICK into the k--E equations) prove difficult due to exactly those problems 
encountered by GFE.28329 

Current progress with the FEM 

Betts and HaroutunianZ9 have proposed a FE formulation with several of these ingredients and 
have successfully applied it to flow over a backward-facing step and a model of the atmospheric 
surface layer. The formulation is based upon the methods of Gresho et aL3O so that the transient 
rather than the steady equations are tackled. Over each element, the u, k and E fields are linearly or 
bilinearly represented, whereas p is piecewise constant. The discretization is effected by Galerkin 
approximation (although, unlike Gresho, 2 x 2 point quadrature is used) and the solution is 
obtained through explicit Euler time-marching to the steady state. In order to stabilize this 
procedure, a ‘balancing tensor diffusivity’ is introduced which, for finite time steps, is still active 
when the steady state is achieved. Consequently, (stabilising) numerical diffusion acting only along 
the streamline direction is introduced for all variables, the diffusivities being proportional to CT,, 
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where C is the Courant number and rh is the local grid Peclet or Reynolds number. This feature, 
together with the time-marching procedure (equivalent to an explicit relaxation technique), 
renders the scheme comparatively robust and thus an attractive base for industrial computation. 
However, this is achieved with the penalty of some curtailment of the FEM second-generation 
features. Apart from the introduction of false (streamline) diffusion on all variables, the degree of 
local refinement which can be afforded is limited by the stability bound on the Courant number. 

BenquC and his co-workers at Electricit6 de France-LNH have pioneered the development of 
FE-based split operator techniques, convection being treated by the characteristic-Galerkin 
method.31 The essential principles of this approach can be simply explained by considering the 
scalar transport equation 

Equations (1)  (provided pT is a constant), (5) and (6) are of this general form. If a space of time- 
dependent weighting functions $(x, t )  is employed to convert equation (14) into an integral 
formulation, then in the usual Galerkin fashion, at any instant t, 

If, now, equation (15) is integrated in time over the interval (t,, t,+ 1), we obtain 

The key to the method is now to choose functions $ such that D$/Dt=O on ( t n , t n + l ) .  
Equation (16) then reduces to the much simplified form 

which can be discretized in time, typically by trapezoidal integration, to form a fairly simple, 
implicit algorithm for (n + 1)th time level values of 8. The choice of $ such that D$/Dt = 0 implies 
that $ is independent of time in a frame moving with the fluid particles; that is, the weighting 
functions are transported along the streamlines. These functions are constructed as follows. A finite 
element spatial discretization is introduced and the functions at time t = t ,  + are defined to be the 
usual element basis functions on this grid. At time t = t,, they are the basis functions on a grid 
formed by moving the nodal points back along the streamlines to the positions they would have 
occupied (at t = t,) if they were fluid particles. When the method is applied to the momentum 
equations (constant pT), equation (1  7) represents a generalized Stokes problem, % representing 
each of the velocity components. This is handled using the preconditioned conjugate gradient 
Uzawa algorithm.32 When a turbulence model such as k--E is introduced, the velocity components 
can no longer be formally decoupled due to the spatially varying pT and the cross-coupling 
introduced by the wall functions. However, these difficulties have been resolved and the method 
has been successfully applied to several complex flows.32 As before, the key to robustness is the 
action of numerical diffusion along the streamline direction and a time-marching technique for 
'homing in' on the solution. Unlike the previous formulation, the scheme is unconditionally stable 
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and thus there is, in principle, no restriction imposed on the degree oflocal refinement which can be 
introduced. However, improved local resolution of the solution (the primary purpose of local 
refinement) may not ensue without a concomitant reduction in the time step. 

Brison et a/ .33 introduced a formulation, further developed in reference 34, in which the 
momentum equations are advanced through time using a semi-implicit fractional time-stepping 
technique. The first (fractional) step handles convection, thus producing a generalized Stokes 
problem for the second (fractional) step. The k and E equations are each advanced by a single 
implicit time step. Streamline upwinding in the manner of Hughes and Brooks35 is introduced into 
all equations. The method has been successfully applied to jets and flow over a backward-facing 
step at a Reynolds number of 4.5 x lo4. It is claimed that the algorithm is unconditionally stable 
consequently there is no practical restriction on the degree of local refinement which can be 
introduced. However, as pointed out above, such unconditional stability may be achieved at the 
expense of local accuracy on highly refined grids. For example, the recirculation length calculated 
by Brison et al. was 5.33h, whereas, for the same problem, Betts and Haroutunian, using an explicit 
time-stepping scheme, produced a value 6.23h. The experimentally measured value was 7.0h f 0.5h. 

Coulon and M a g n a ~ d ~ ~  have successfully applied a similar technique to a pipe expansion 
problem with experimentally provided data set at an inlet just downstream of the expansion. Once 
again, the key to success appears to be the adoption of a transient algorithm incorporating 
streamline diffusion.35 

Benim and ZinserI6 have solved the same problem (albeit with a much larger expansion ratio) by 
tackling the steady equations directly. They adopted a strategy which alternated between 
dynamical and turbulence equation sets, each being solved implicitly within iterations. Unfortu- 
nately, few details of the scheme are provided in Reference 16. Its stability seems due, in large part, 
to under-relaxation of the updated field variables and the introduction of the Hughes quadrature 
upwind scheme35 (this is more diffusive than streamline upwinding). 

Another approach which avoids time-stepping has been proposed in Reference 15. This also 
avoids reliance upon upwinding, so that the algorithm lies much closer to the original GFE 
treatment of the Navier-Stokes equations (viz., no limitation on grid designs and formally free of 
numerical diffusion). As already pointed out, Smith has shown that, if the representation of S, over 
an element is judiciously chosen (e.g., S ,  a constant), then a solution to the discrete system exists for 
the most exacting of cases without resorting to upwind weighting or the explicit inclusion of 
numerical diffusion. Unfortunately, this solution is difficult to locate, especially using implicit non- 
linear solvers such as NR-based schemes. It transpires that this problem is considerably eased by 
adopting an alternative description of the turbulence based upon q( = k”’) and f (a frequency of 
the large-scale motions) rather than k and E . ~ ~ * ~ ~  This approach will now be examined in some 
detail, since it forms the basis of the computations to be presented later. 

The q- f formulation 

According to the q-f formulation, eqautions (4)-(6) are replaced by 
pTIRe = ql, 
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D, = Cpq2/j, Dj- = C2,f 2, (24) 
where K and F‘ represent q2 and lnf2 respectively. When R,f is set to zero, equations (1 8)-(24) will 
be said to constitute the q-f’model of turbulence (as shown later, R ,  can be chosen to render the 
system equivalent to k - ~ ) .  The currently favoured GFE discretization of this system, as described in 
Reference 21, differs in detail from that originally proposed in Reference 15 (particularly in the 
treatment of S,) and is effected as follows. On each element q in the convective and K in the diffusive 
terms of equation (20) are interpolated on the same level as u. The source terms P,  and D, are 
interpolated quadratically, whereas n, is represented on the same level as pressure (i.e., linearly). 
Linear representations for S, and (dq/dx,J2 are constructed on each element, these being defined by 
the values of these quantities at the Gauss points. An algebraic system for each element is then 
developed from equation (20) by weighting the residual with the velocity basis functions, the 
required nodal values of P,, D,  and n, being generated by evaluating equations (22)-(24) at each 
node (nodal values of S ,  and (dq/dxm)’ are provided from their linear representations). The ,f 
equation (equation (21)) is treated similarly, with f in the convective and F in the diffusive terms 
interpolated on the same level as u. 

The boundary conditions used are the counterparts of those discussed previously and apart from 
the wall treatment require little further explanation. At the wall (dq/?n), = 0 is applied as a natural 
boundary condition, equation (12) becomes u, = CtI4y,, and f is evaluated as C : ’ 2 ~ , / ~ h .  

The resulting numerical model displays some very desirable features due to the properties of 
equations (1 8)-(24). These can be summarized as follows. 

(i) 

(ii) 

(iii) 

The coupling between equations (20) and (21) is comparatively weak. Equation (20) 
depends uponf only through the definition of I (equation (19) and equation (21)) depends 
upon q only in the diffusivity n,. 
Ifequations (20) and (21) are viewed in separation (i.e., 1 is supplied to equation (20) and q2 is 
supplied to equation (2  I ) ) ,  then diffusivities remain positive (equation ( 2 2 ) )  and sources and 
sinks do not reverse their role (equations (23) and (24)), irrespective of the sign of the 
dependent variables q and f .  
If the first term of equation (20) is ignored, P, is assumed given (by some previous iteration 
say) and suitable boundary conditions are supplied, then the discrete counterpart of the 
resulting equation has a unique solution for q2. This immediately follows from linearity in 
q2 and (ii) above. Smith15 has demonstrated a similar result for equation (21) for a single 
one-dimensional element. 

Property (iii) gives rise to the hope that equation (20) will yield a unique solution for q2 and 
equation (21) a unique solution for f under most practical conditions. Property($ suggests that 
an iterative scheme such as Newton-Raphson will not ‘jump’ to a non-physical regime and thus 
will fairly readily seek these solutions. Property (i) indicates that a cycling strategy which alternates 
between equations (20) and (21) should converge rapidly provided only a weak coupling is 
introduced at the boundaries. Thus a solution procedure is adopted which produces u from the 
momentum equations for a given pr; then, freezing u updates pr by cycling around equations (20) 
and (2l).I5 

Generally speaking, these expectations are realised in practice and the scheme proves fairly 
robust. The main qualification arises from the fact that, due to the form of the convective terms in 
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equations (20) and (21), solutions are sought for q and f rather than q' and f'. It is found that, if the 
grid is locally inadequate to capture the true variation, the expected solutions for q2 and f ' may 
overshoot to produce negative values, so that, locally, there is no real solution for the iterated 
variables q and f. In practice, this results in a local oscillation between iterations, the rest of the field 
being satisfactorily converged. In the true spirit of GFE, this is a sign that local refinement is 
required to capture local detail. 

A set of values for the model constants has been produced with which the q-f model accurately 
simulates flow in a pipe e~pans ion . '~  However, unlike k--E, the model has not been benchmarked 
for a wide variety of flows, so that it cannot as yet be used with confidence in general application. If 
R, in equation (21) is given by 

where 

and K' = lnq', then the q-f system is formally equivalent to k--E provided C,, cq, of, C,,, C,, are 
given the values 0.09, 1.0,1.3,0.44,0.92 respe~tively.'~ It is found that, if R, is incorporated into the 
q-f formulation by discretizing R;& (equation (26)) in the same way as S ,  and treating the diffusion 
term in equation (25) in the usual GFE fashion, the scheme's performance is only marginally 
affected and readily converges for many practical applications. Convergence can be aided by 
adding a streamline diffusion term to equations (20) and (21) in the manner of Hughes and 
Brooks,35 but this is necessary only in the most difficult of cases. In view of the previous discussion 
concerning the difficulties in converging k k ,  this result may appear somewhat surprising but it is 
not contradictory. The choice of S ,  and R,, on the grid (linear and discontinuous between 
elements) guarantees a solution to the system for most practial configurations and the q- f 
formulation simply provides a stable route for locating it. In the cases where the gridding is not 
sufficient to yield a solution, the scheme fails only locally and in a mild manner, indicating where 
extra refinement should be introduced. 

INDUSTRIAL APPLICATIONS USING THE 4-f FORMULATION 

The k--E version of the above-described q-f-based scheme has been applied to a variety of industrial 
problems. Several of these are briefly described below, each highlighting one or more of the 'second- 
generation' features of the FEM listed in the Introduction. In each case the computations were 
performed on an IBM3081. 

Gas flow in the boiler of an advanced gas-cooled reactor 

The mesh shown in Figure 2(a) amply demonstrates the boundary-fitting capability of finite 
elements and the use oflocal refinement to resolve detail in regions of the flow where large gradients 
of the variables occur. The mesh was used to calculate cross-flow over boiler pipes in a symmetry 
element of the primary superheater of a nuclear boiler. The predicted flow streamlines and the 
turbulence energy field (non-dimensionalized) are shown in Figures 2(b) and 2(c) (u,, is the mean 
bulk velocity and D is the tube diameter) and they prove to be in reasonable agreement with 
available experimental data. Starting from an initial guess of u = 0 and pT, 1 specified constants, 
convergence of the solution was obtained after 25 NR iterations of each equation set. Computing 



TURBULENT FLOWS OF INDUSTRIAL COMPLEXITY 1289 

Figure 2(a). Finite element mesh (467 elements) for flow over AGR boiler pipes 

H 
/ 

Figure yb). Flow over AGR boiler pipes; stream function ($/u,,D). Contours equally spaced, L = - 0.0196, H = 0.66 

H H 

Figure 2(c). Flow over AGR boiler pipes; (turbulence energy)’’’ (i.e. q/ub). Contours equally spaced, L = 0177, H = 0.902 

times for one NR iteration of the momentum, q and f sets of equation were 10-5,3.8 and 4.9 
respectively. 

Electromagnetic stirring of a coreless induction furnace 

In Figure 3(a), a finite element prediction37 of the flow field in an axisymmetric model of an 
induction furnace is compared with experiment. The body force in this flow arises from the 
interaction of the induced current and magnetic field from a coil wrapped around the furnace. 
Figure 3(b) shows profiles of vertical velocity across the centre of the upper vortex and agreement 
between experiment and the finite element prediction can be seen to be quite good. In comparison, 
a published prediction obtained using a conventional finite volume code badly underpredicts the 
vortex strength, almost certainly due to numerical errors on an inadequate mesh. The finite 
element prediction shows that the discrepancy between experiment and the finite volume solution 
is not due to the k--E turbulence model as previously supposed. The finite element mesh consisted of 
22 x 13 rectangular elements and each NR iteration of the momentum, q and f equation sets took 
146,3.9 and 3.9 s respectively. Convergence of the solution was obtained after 30 NR iterations of each 
equation set, using a simple initial guess of u = 0 and k, 1 specified constants. 
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Gas jet penetration into a large building 

Figure 4(a) represents an axisymmetric idealization ofjet penetration into a large building. A gas 
jet emerges from a cylindrical vessel situated below the floor of the building and entrains air drawn 
through a surrounding annulus before passing into the building through a floor aperture. The jet 
impinges on the roof, circulates around the building and then exits through the floor vent at A. This 
application exemplifies how topologically non-structured grids can be used to match two regions 
differing greatly in scale. The grid used consists of 569 elements and 1720 nodes. Each NR iteration 
of the momentum, q and f equation sets took 19,4 and 5 s respectively. Due to the complexity of the 
flow, a certain amount of coaxing was necessary to gain a solution from a zero-velocity, constant-pT 
initialisation. However, once obtained, it served as a starting point for subsequent runs, which 
converged in 10-20NR iterations of each set. 

The aim of the exercise is to predict the variation of pressure drop, Ap, across the floor with 
entrainment ratio A (mass flow drawn through the annulus divided by jet mass flow at the nozzle). 
This pressure drop can be varied in practice by opening or closing the vent A. Figures 4(b) and 4(c) 
show the entrainment flow patterns for a high and low Ap respectively. The required Ap-2 
variation (Ap normalized against p U 2 ,  where U is the jet velocity at  the nozzle) is given in Figure 5. 
The broken curve represents the standard k--E prediction, whereas the chain curve represents the 
prediction with C , ,  increased to 1.6. This modification is known to correct the round jet anomaly 
(i.e., reduce entrainment into a free round jet to the observed value)38 and, as can be seen, brings the 
present prediction into much closer agreement with experiment. 

Turbulent flow in an electrostatic precipitator 

The fluid flow code incorporating the q- f algorithm has been extended to include the equations 
governing the electric field and transport of charge in an electrostatic precipitator. This enables the 
simulation of the turbulent flow within the precipitator and, in particular, its response to the 
electrostatic force field. Figure 6(a) portrays the configuration and grid used for one such 
calculation. The region of interest is a 300 mm wide channel with earthed walls and a series of strip 
electrodes arranged along the centre of the channel, each having one edge serrated to promote a 
discharge in its vicinity. It is evident that a non-structured grid such as that shown is required to 
practically resolve the detail of this discharge and the associated field. Figure 6(b) shows 
the calculated contours of electric potential and charge density within the precipitator when the 
average current density across the earth-plate is 100yAm-’ and the discharge is oriented to the 
right. The response of the flow to the electrostatic force field is shown in Figure 6(c), where both the 
axial velocity and q-profiles across the channel at a location midway between electrodes are 
plotted. It can be seen that the flow in the centre of the channel is accelerated in the direction of the 
discharge and turbulence levels are increased generally. 

CHALLENGES AND PROSPECTS FOR THE FUTURE 

It is clear that activity in turbulent flow simulation is now burgeoning and that several approaches 
have recently evolved which render the finite element method fully capable of solving two- 
dimensional turbulent flows of industrial complexity. That is to say, solutions to the k--E system in 
complex configurations can be attained without painful coaxing and operator intervention and 
with only modest demands upon computer time and memory. Furthermore, the simulations which 
have so far been performed have highlighted to great effect the virtuosity of the method in this 
important field of CFD. What, then, are the challenges and prospects for the future? 
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Figure 4(a). FE grid for gas jet penetration into a large building 

Figure qb). Gas jet 
LLY 

penetration into a large building; streamlines for high Ap 
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Figure qc). Gas Jet penetration into a large building; steamlines for low Ap 

o Experiment ----- Standard k - &  
-.-.- Modified -.} calculation 

0.00Er 

Figure 5. Gas jet penetration into a large building; comparison between experiment and calculation 

One of the unique advantages of the FEM is the use of non-structured grids in resolving local 
detail. This advantage, while attractive in two dimensions, could be crucial for the effective design 
of three-dimensional grids to fit difficult geometries. Baker and Jameson in a recent article’* point 
out the difficulty of designing finite-volume-type structured grids (i.e., a grid of regular topology) to 
fit complex three-dimensional geometries. In their opinion, this difficulty has hindered the 
development of flow field computational methods to treat a complete aircraft and they are 
currently developing an approach based upon non-structured grids of tetrahedra. Thus, if the finite 
element method is to realize its true potential in industrial application, any turbulent flow 
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Figure 6(a). Turbulent flow in an electrostatic precipitator; configuration and grid 

P 

Figure qb). Turbulent flow in an electrostatic precipitator; calculated contours of electric potential (Q) and charge 
density ( p )  

capability must be viable (i.e., considered affordable) on practical, three-dimensional grids of 
general design. This poses a far from trivial challenge, as can be appreciated by considering the 
costs of treating a regular, linear brick grid with N nodes in each of the three co-ordinate directions. 
If the steady equations are tackled directly, then, as we have seen, the method is likely to alternate 
between turbulence and momentum sets, updating each perhaps by a combination of NR iteration 
and direct elimination (e.g., a frontal solver) within each iteration. If it is assumed that, in order to 
reduce costs, pressure is eliminated by employing a penalty treatment of continuity, then for each 
momentum update (of which there could be many) the operation count per NR iteration 
(excluding assembly) is - 54N7 (cf. 16N4 in 2D) and the storage requirement is - 9N4(N + 1) 
(cf. 4N2(N + 1) in 2D). Thus, for example, if N is 30, which is by no means overtaxing for F V  
codes, the number of operations per NR iteration is - 10” and the storage requirement is 226 
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Figure 6(c). Turbulent flow in an electrostatic precipitator; profiles of axial velocity and q across the channel midway between 
electrodes for various discharge orientations 

megawords. In most industrial environments this would be considered unaffordable. It would 
therefore seem that more explicit, iterative algorithms are required which can separate the nodal 
variables both in type and in space, reducing the scale of the problem to manageable proportions. 
Indeed, such algorithms lie at the heart of most FV codes. In the FE context, if the advantage of 
non-structured grids is to be retained, this is perhaps simpler to contrive by tackling the transient 
equations and time-stepping to the steady state. The problems of affordable time-dependent 
solutions to the three-dimensional Navier-Stokes equations have been examined in some depth by 
Gresho et ~ 1 . ' ~  Their three-dimensional explicit algorithm3' has evolved out of these studies and 
this has been adapted for turbulent flow computation by Betts and Harout~nian.'~ While this 
undoubtedly represents a significant advance, unfortunately the stability limit on the Courant 
number must lead to an impairment of the local refinement capability (and hence arbitrary grid 
design), which is the major attraction in three dimensions.* 

The semi-implicit characteristic-Galerkin technique being pursued by the Group at Electricite de 
France-LNH, being unconditionally stable, does not suffer any such practical limitation. Each 
nodal variable (including each velocity component) is treated separately and only fairly simple 
Poisson systems (amenable to conjugate gradient solution) are handled each time step. The method 
has been demonstrated for various two-dimensional turbulent flows as well as for a three- 

*It has been pointed out to the authors that, using the later, semi-implicit version of the Gresho et al. algorithm,41 this 
impairment is not so severe. The Courant number stability limit is significantly relaxed (C 5 5 to 10) whereas the diffusion 
limit, which may be more restrictive if the local refinement is introduced to capture regions of high shear, is removed 
completely. 
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dimensional laminar flow on a complex, non-structured grid (12936 quadratic tetrahedra, 20108 
nodes).39 The latter was performed upon a CRAY XMP requiring 20 min of CPU time and 2.5 
megawords of memory. 

Progress, then, is being made on affordable extension to three dimensions and, given the upturn 
in activity generally in FE turbulent flow computation and a growing realization of its advantages 
in 3D, new, innovative ideas are sure to emerge in the near future. The much more daunting 
challenge for the future, one which faces all workers in the field, whether finite element or finite 
volume, is the improvement of the underlying physical models. It is now conceded that wall 
functions are valid only for a very limited range of conditions, essentially when the turbulence 
structure is in local equilibrium and far-field influences are of secondary importance. If these 
functions are to be abandoned, then effective means must be evolved for coping with the large 
number of grid points which must by necessity be introduced in the neighbourhood of the wall. 
With the exception of Taylor et it seems very little (finite-element-based) effort is being 
devoted to this problem. The k--E turbulence model itself is also of fairly limited applicability, 
particularly if details of the turbulence field are important (it may hold up quite well for gross 
features of the flow). The thrust forward is to move to algebraic stress or perhaps full Reynolds 
stress transport models for which five (in 2D) or seven (in 3D) highly coupled, non-linear 
(temperamental) equations for the turbulence field have to be solved. It seems probable that 
routine industrial flow simulation will rely on k--E and wall functions for some time to come. 
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